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Abstract— Modern safety-critical energy infrastructures are
increasingly operated in a hierarchical and modular control
framework which allows for limited data exchange between
the modules. In this context, it is important for each module
to synthesize and communicate constraints on the values of
exchanged information in order to assure system-wide safety. To
ensure transient safety in inverter-based microgrids, we develop
a set invariance-based distributed safety verification algorithm
for each inverter module. Applying Nagumo’s invariance con-
dition, we construct a robust polynomial optimization problem
to jointly search for safety-admissible set of control set-points
and design parameters, under allowable disturbances from
neighbors. We use sum-of-squares (SOS) programming to solve
the verification problem and we perform numerical simulations
using grid-forming inverters to illustrate the algorithm.

I. INTRODUCTION

The massive failure of the Texas electrical grid in February
2021 [1] gave global coverage to the issue of power network
resilience. During these extreme events, time and resources
are of essence for the grid operator to assess the situation and
take appropriate actions to maintain the operating state of the
power network. Hence, to an extent it is imperative on the
grid operator to be prepared for extreme events. Microgrids,
both grid-connected and stand-alone, have shown promise
to enhance resilience and reliability by paving a way of
coordinating multiple distributed energy resources (DERs) as
a locally operated single controllable entity [2], [3]. However,
ensuring operational stability, safety, and reliability of any
power network involves a complex multi-timescales problem,
spanning sub-seconds to minutes and hours. Traditional
power system control operations were largely structured
around a temporal decoupling which allows slower-timescale
operations (e.g., optimal dispatch) need not directly take
into account faster-timescale constraints, and vice versa.
However, with the emergence of inverter-based DERs and
the associated changes in power systems dynamics (e.g.,
reducing inertia), the timescales separation is expected to
continue to shrink [4]. The droop-controlled inverter based
microgrids have a lower inertia than conventional generators,
which allows large variations of the voltage and frequency
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of each inverters [3], [5]. The fluctuations happen during
the transient evolution occurring as a result of a fault or
due to the transitions between the power set-points, and can
lead to violation of safety constraints [6]. It is imperative to
develop a mechanism to inform slower-timescale operations
(e.g., optimal dispatch of power set-points) of the constraints
arising from faster-timescale (transient) dynamics.

Many recent efforts have addressed this need via, for
example, stability and security-constrained optimization [3],
[5], [7], identification of local and distributed parametric
stability conditions [6], [8], [9], etc. The distributed iden-
tification of stability conditions are particularly interesting
since these fit well into a multi-ownership models of mi-
crogrid resources, and facilitate hierarchical and plug-and-
play operations [10]. However, most of the related literature,
as above, only focus on the stability which concerns with
the convergence of power system trajectories (close) to its
normal operating point after a disturbance. The concept of
safety, on the other hand, relates to avoiding critical opera-
tional limits (e.g., on voltages and frequencies), even under
large disturbances. Safety is closely tied to resilience, since
often in cyber-physical adversarial scenarios, an immediate
priority is to contain the system trajectories within some
acceptable set, rather than ensuring return to normality.

Safety-constrained control techniques are gaining recent
attention in the power systems community [11]–[14]. Model-
predictive control [15] remains one of the most commonly
used methods for enforcing dynamic constraints over some
prediction horizon. However, it suffers from certain limita-
tions in the context of power system dynamics, related to,
for example, nonlinearity and associated complexity of the
dynamics, information disparity due to communication over-
heads and/or privacy concerns, and computational burden,
especially for longer prediction horizon [13]. To circumvent
these issues, distributed safety verification and control meth-
ods based on robust forward set-invariance principles have
been proposed in [11]–[14]. However, these prior works rely
on the existence or the construction of parametric Lyapunov
functions and/or barrier functions, thereby often incurring
prohibitive computational costs and resulting in conservative
safety certificates. The work in [11], for example, proposes
a sum-of-squares (SOS) programming based computation al-
gorithm for distributed safety certificates as a super-level set
of barrier functions. However, such computational methods
result in conservative estimates of the safety-guaranteed set



(e.g., Fig. 1 in [11]), and typically do not scale well.
In this work, we consider a hierarchical and modular

microgrid control architecture, [10], [14], [16], which al-
lows system-level dispatch of power set-points to inverter-
based resources, accommodating only limited data exchange
between the (neighboring) inverter modules. Our objective
is to design bounds on dispatched control set-points at the
inverter buses, that guarantee, in a distributed sense, the safe
excursions of local voltage and frequency within the specified
limits while tolerating uncertainty in the neighboring buses.
Specifically, the work presented in this paper relies on the
Nagumo’s theorem [17], [18] to build an efficient method for
distributed and robust safety verification, without requiring
existence or construction of barrier functions. Thus, the
proposed approach requires less computation, and relaxes
the conservativeness of the barrier-certified safe sets by
directly accommodating the original safety specifications.
The explicit reference governor [19] relies on the same
concept but we focus on establishing safe bounds on control
inputs, instead of deriving a specific control law, which is
the role of the grid coordinator [14].

The main contributions of this article are threefold. Firstly,
we determine the maximal interval (bounds) of the dis-
patched control set-points guaranteeing the safety of droop-
controlled inverters. Secondly, we establish the monotonic
relationship between this interval of safety admissible control
set-points and the droop coefficients. Finally, we calculate
efficiently the maximal droop coefficient for which these
safety admissible controls exist. As such, this paper provides
novel design guidelines for the droop control parameters,
extending the literature on stability-informed droop settings,
e.g., [6], [8], [9], and the references therein. We use SOS
programming to solve the safety verification problems, and
illustrate the algorithm via numerical simulations. The re-
mainder of this article is structured as follows. Section II
provides a background of the relevant theory. Section III
presents our microgrid problem of interest. Section IV ex-
plains the theoretical approach which we illustrate on a
numerical example in Section V. We conclude this article
with Section VI.

II. PRELIMINARIES

A. Invariant Sets

Consider a nonlinear dynamical system of the form

ẋ(t) = f
(
x(t)

)
, x ∈ Rn, (1)

with f a Lipschitz continuous function. The objective of our
work is to identify safe sets that the state x cannot leave.
Such sets are called invariant (or positively invariant); we
define them as in [18].

Definition 1: A set S is invariant by the dynamics (1) if
x(0) ∈ S yields x(t) ∈ S for all t ≥ 0.

To characterize invariant sets we will be using a theorem
first established by Nagumo [17] and then independently
rediscovered by Brezis [20]. We state here a more modern
formulation of this result from [18].

Theorem 1 (Nagumo 1942): A closed set S is invariant by
the dynamics (1) if and only if for all x ∈ S, f(x) ∈ C(x),
with C(x) the Bouligand tangent cone to S at x.

A full definition of the Bouligand tangent cone is given
in [18], but we will be studying sets S where the Bouligand
tangent cone is R+ or R−. The geometrical interpretation of
Nagumo’s theorem is that f pointing inside S on its boundary
prevents trajectories from leaving S.

B. Network Safety

In a network, the dynamics of node i can be modeled by

ẋi(t)=fi
(
xi(t), ui(t), wi(t)

)
, xi∈Rn, ui∈U, wi∈W, (2)

with ui a control input, wi an external input, and U and W
their respective admissible sets. For such a system we need
to adapt our definition of invariant sets following [18].

Definition 2: A set S is robust control invariant by the
dynamics (2) if there exists a feedback control law ui(t)
such that for all xi(0) ∈ S and all time-varying wi ∈ W ,
xi(t) ∈ S for all t ≥ 0.

We then want to determine the set of control inputs
u ensuring the robust control invariance of a given safe
set S despite the fluctuations in the neighboring inverter
states. In particular, specific to the example of inverter-based
microgrids, i.e., when the safe sets are expressed as box
constraints on the states (as in (6)), we define the following:

Definition 3: A 1-dimensional set S = [s, s] is upper
invariant (resp. lower invariant) for a set of controls U by
the dynamics (2) if for all time-varying w ∈W , u ∈ U and
all x(0) ∈ S, then x(t) ≤ s

(
resp. x(t) ≥ s

)
for t ≥ 0.

If S is upper invariant (resp. lower invariant), then the
state cannot escape by crossing the upper bound (resp. lower
bound) of S. Notice that if there are controls making S both
upper and lower invariant, then S is a robust control invariant
set. We denote such controls as safety admissible.

Definition 4: A set of controls U is safety admissible for
the set S if for all controls u ∈ U , the set S is robust control
invariant.

As we will detail later, if the dynamics (2) and the safe
set S are polynomial, e.g., S =

{
x ∈ Rn : pj(x) ≥ 0,

j ∈ {1, . . . ,m}
}

with pj polynomials, then the invariance
condition of Nagumo’s theorem can be stated as a polynomial
inequality, enabling its fast computation.

III. PROBLEM DESCRIPTION

A microgrid power network is operated by a microgrid
coordinator that determines power setpoints for each node of
the grid [14], [16]. The transition in between these setpoints,
corresponding to a transient regime, might lead the frequency
or voltage of some inverters to violate safety constraints.
We are thus interested in ensuring the transient safety of
microgrid networks, so that they are reliable when operated.
Consider the case of droop-controlled inverters [6]:

θ̇i = ωi, (3a)

τiω̇i = −ωi + λpi
(
P seti − Pi

)
, (3b)

τiv̇i = v0i − vi + λqi
(
Qseti −Qi

)
, (3c)



where θi, ωi and vi are, respectively, the phase angle,
frequency and voltage magnitude of node i. The droop-
coefficients λpi > 0 and λqi > 0 are associated with the
active power vs. frequency and the reactive power vs. voltage
droop curves, respectively. The time-constant of the low-pass
filter used for the active and reactive power measurements
is τi. The nominal voltage magnitude is v0i . The active
power and reactive power set-points are P seti and Qseti ,
respectively. Finally, the active and reactive power injected
into the network are Pi and Qi, respectively following the
nonlinear coupling equations

Pi = vi
∑
k∈Ni

vk(Gi,k cos θk,i −Bi,k sin θk,i), (4a)

Qi = −vi
∑
k∈Ni

vk(Gi,k sin θk,i +Bi,k cos θk,i), (4b)

where θk,i = θk − θi, and Ni is the set of neighbor nodes
with the convention that i ∈ Ni. The transfer conductance
and susceptance of the line connecting nodes i and k are
denoted by Gi,k and Bi,k, respectively.

We use the formulation of [11] to model the capability of
the inverters to change their control set-points of the active
and reactive power output in order to adjust to different
operating conditions. More specifically, we write

P seti = P 0
i + upi , and Qseti = Q0

i + uqi , (5)

where P 0
i and Q0

i are the set-points for the nominal operating
conditions; and upi and uqi are control inputs. We are thus
interested in maintaining at all times both voltage and
frequency within some pre-specified safety limits. By a usual
abuse of notation, instead of considering the actual voltage,
we consider its difference from the nominal voltage v0i = 1
p.u.. Following [11], [21], [22], we consider the voltage and
frequency safe sets to be

Sv = [v, v] = [−0.4, 0.2] p.u. , (6a)
Sω = [ω, ω] = [−3, 3] Hz . (6b)

For the inverters (3), the perturbation wi from Definition 2
are the neighbor voltage magnitudes (vk) and phase angle
differences (θk,i) that determine the power transfers, Pi and
Qi . For the purpose of this paper, we assume that the
phase angle differences between (any) two neighbor buses
are bounded as follows:

θi,k ∈ Sθ = [−π/6, π/6] ∀k ∈ Ni . (7)

Note that such range of phase angle differences are typical
of distribution feeders, and especially microgrids, that are
often characterized by relatively short lines connecting two
buses [23]. Furthermore, note that only the difference of
phase angles θi and θk as opposed to their individual values,
determine the power-flow connecting the nodes i and k .
Thus, for simplicity to notations and without any loss of
generality, we set θi ≡ 0 as the reference angle, and use
θk,i ≡ θk throughout this text. Then, we want to determine
controls ui = (upi , u

q
i ) that maintain vi ∈ Sv and ωi ∈ Sω ,

whatever the values of θk ∈ Sθ and vk ∈ Sv for the
neighbors k ∈ Ni.

Problem 1: (Safety-Admissible Control) What values of
control set-points ui ensure that Sv and Sω are robust control
invariant by the dynamics (3)?

Moreover, note that the impact of neighbor (and network)
disturbances on the inverter dynamics (3) are enhanced by
larger droop values, a fact which suggests the existence and
size of the safety-admissible controls depend on the chosen
droop coefficients. This motivates the following question:

Problem 2: (Maximal Droop) What values of droop co-
efficients (λpi , λ

q
i ) ensure the existence of a non-empty

safety-admissible set of controls, guaranteeing robust control
invariance of Sv and Sω as per dynamics (3)?

IV. THEORETICAL CONSTRUCTION

In this section we establish the theory concerning robust
control invariant sets for droop-controlled inverters. Since
λpi > 0 and λqi > 0 in the inverter dynamics (3), we
can define a minimal lower control u and a maximal upper
control u such that

u = inf
{
ulow ∈ R : S is lower invariant for all u ≥ ulow

}
,

u = sup
{
uup ∈ R : S is upper invariant for all u ≤ uup

}
.

If u ≤ u, then the maximal interval of safety admissible
controls is [u, u]. To illustrate these definitions and our
objective let us study a simplified version of (3).

A. Simple Example

Consider the frequency dynamics equation (3b) when the
inverter has a single neighbor. To simplify take τ = 1s,
λp = 1rad/s/p.u., θ2 = 0rad, P 0 = 0p.u., G = −2p.u.−1

and a safe set S = [−1, 1]Hz. Then, ω̇ = −ω + 2ωω2 + u.
To make S upper invariant, according to Nagumo’s the-

orem we need ω̇ ≤ 0 when ω = 1. Thus, we want
2ω2 − 1 + u ≤ 0, so u ≤ 1 − 2ω2. We are looking for
robust controls u working for all possible ω2 ∈ S. Then, the
maximal upper control is u = −1, because for ω2 = 1, we
need u ≤ −1.

Similarly, to make S lower invariant, we need ω̇ ≥ 0
when ω = −1. Then, we want −2ω2 + 1 + u ≥ 0, i.e.,
u ≥ −1 + 2ω2. Thus, the minimal lower control is u = 1.

In this setting, u < u, there are no safety admissible
controls making S robust control invariant. A reason for this
failure is that λp is too large, making ω unstable. Indeed, for
small values of λp, (3b) can be approximated by τiω̇i = −ωi
which is stable. We will elaborate further on this issue in the
following subsections.

B. Minimal controls for upper and lower invariance

Let us determine the minimal lower control for Sω . By
definition, upi = inf

θk,vk
{upi : ω̇i ≥ 0, ωi = ω}. With (3b),

upi = inf
{
upi : upi ≥ 1

λp
i
ω + Pi − P 0

i , ∀θk, vk
}

. Then, the
minimal upi that is larger than all

[
1
λp
i
ω+Pi−P 0

i

]
(θk, vk) is

in fact the maximum of this term over all θk and vk, because



Pi is continuous in θk, vk according to (4a) and, Sθ and Sv
are compact. Thus,

upi = max
θk,vk

1

λpi
ω + Pi − P 0

i , (8)

subject to θk ∈ Sθ, vk ∈ Sv, k ∈ Ni,

Then, ω̇i ≥ 0 when ωi = ω and upi ≥ upi for all θ ∈ Sθ
and v ∈ Sv , which guarantees lower invariance according to
Nagumo’s theorem. Similarly, the maximal upper control is
defined as

upi = min
θk,vk

1

λpi
ω + Pi − P 0

i , (9)

subject to θk ∈ Sθ, vk ∈ Sv, k ∈ Ni,

and makes ω̇i ≤ 0 when ωi = ω and upi ≤ upi for
all θ ∈ Sθ and v ∈ Sv . The minimal lower control uqi
and maximal upper control uqi for the voltage equation are
defined similarly.

A great way to solve the optimization problems (8) and (9)
is to use a sum-of-squares (SOS) optimization. A multivariate
polynomial p(x), x ∈ Rn, is an SOS if there exist polynomial
functions hi(x), i = 1, . . . , s such that p(x) =

∑s
i=1 h

2
i (x).

However, the power-flow equations (4) are not polynomials.
Following [11] we choose a third order Taylor expansion of
the dynamics (4) to make (3) polynomial. Then, (8) and (9)
can be solved with any SOS tool.

C. Maximal droop for robust control invariance

The stability of the voltage and frequency rely on small
droop coefficients λ. As in Section IV-A, when λ increases
in (3), the perturbations P and Q increase, and we thus have
the intuition that the set of safety admissible controls should
shrink. We can actually prove a stronger result by using the
fact that the optimizations in (8) and (9) only affect Pi.

Proposition 1: The bounds of the interval of safety admis-
sible controls [u, u] for Sv and Sω are inversely proportional
to the droop coefficient λ.

Proof: We first introduce the maximum and minimum
of the active and reactive powers (4) at the lower and upper
bounds of Sω and Sv . More specifically

Pmaxi = max
{
Pi : ωi = ω, (θk, vk) ∈ Sθ × Sv, k ∈ Ni

}
,

Pmini = min
{
Pi : ωi = ω, (θk, vk) ∈ Sθ × Sv, k ∈ Ni

}
,

Qmaxi = max
{
Qi : vi = v, (θk, vk) ∈ Sθ × Sv, k ∈ Ni

}
,

Qmini = min
{
Qi : vi = v, (θk, vk) ∈ Sθ × Sv, k ∈ Ni

}
.

Then, (8) and (9) simplify to

upi (λ
p
i ) =

1

λpi
ω+Pmaxi −P 0

i , u
p
i (λ

p
i ) =

1

λpi
ω+Pmini −P 0

i .

(10)
A similar result holds for the voltage.

Building on this result, we can then establish a sufficient
condition for the existence of safety admissible controls.

Proposition 2: If the safe set contains 0 in its interior, then
safety admissible controls exist for some droop coefficients.

Proof: Note that ωi does not intervene in Pi (4a), so the
constraints for Pmini and Pmaxi are the same, which leads
to Pmini < Pmaxi . Then, based on (10), the condition ω <
0 < ω is necessary and sufficient to make upi (λ

p
i ) < upi (λ

p
i )

for λpi small enough.
On the other hand, since vi intervenes in Qi (4b), we

cannot order Qmini and Qmaxi without computing them. Thus
the condition v < 0 < v is sufficient but maybe not necessary
to make uqi (λ

q
i ) < uqi (λ

q
i ) for some λqi .

Then, the safe sets of (6) guarantee that safety admissible
controls exist for some small enough droop coefficients. We
now want to find the maximal droop coefficient λ∗ for which
safety admissible controls exist, i.e.,

λ∗ = max
{
λ ≥ 0 : u(λ) ≤ u(λ)

}
. (11)

Remark 1: Note that the problem of identifying the max-
imal droop for stability analysis is relatively well studied in
the literature (see, for instance, [6], [8], [9]). However, as
a novel contribution of this paper, we propose a method to
identify maximal droop values for safety verification.
According to Proposition 1 and 2, if 0 is in the interior of
S and λ ≤ λ∗, then the interval [u(λ), u(λ)] is not empty, is
proportional with 1/λ and makes S robust control invariant,.

Proposition 3: The maximal droop coefficient λ∗ is

λp∗i =
ω − ω

Pmaxi − Pmini

and λq∗i =
v − v

Qmaxi −Qmini

. (12)

Proof: Since upi and upi are continuous in λpi according
to (10), definition (11) leads to upi (λ

p∗
i ) = upi (λ

p∗
i ). Using

(10) we easily obtain the announced expression for λp∗i . The
calculation of λq∗i is similar.

The term Pmax − Pmin in the denominator validates our
intuition that increasing the range of possible perturbations
decreases λp∗. The larger ω−ω is, the larger ω can be, and
thus the stronger the stabilizing term −ω is in (3b), which
increases λp∗. The same analysis holds for λq∗.

Remark 2: There are now two approaches to answer Prob-
lem 1 based on the controls u and u. If λ ≤ λ∗, then u ≤ u
and any control in between guarantees the robust control
invariance of the safe set. On the other hand, if λ > λ∗

we need a state-dependent control law. When the state gets
too close from the upper (resp. lower) bound of its safe set,
applying u (resp. u) prevents safety violation. Besides, u and
u can be precomputed, so that the sole real-time action of
the controller is to decide which one of the controls to apply.

V. NUMERICAL ANALYSIS

In this section we apply our theory to a modified microgrid
model [24], and demonstrate the robust control invariance
of the safe sets Sv and Sω introduced in (6). As per the
modifications in [11], [14], four inverters were placed in the
network, three of those at buses 1, 4, and 5, and the fourth at
bus 0 after disconnecting the utility for islanded operation.

In a microgrid, the distance between inverters is small and
thus the states of neighbors are strongly coupled. To account
for this physical phenomenon we introduce two constants



∆v and ∆ω measuring the range of allowable uncertainty of
neighboring inverters such that vk ∈ [vi −∆v, vi + ∆v] and
ωk ∈ [ωi − ∆ω, ωi + ∆ω] for k ∈ Ni. For the numerical
analysis we choose ∆v = 0.02p.u., which is 2% of the
nominal voltage v0i , and ∆ω = 0.12Hz, which is 2% of
the 6Hz range of Sω . The nominal droop coefficients of the
network are λp = 2.51rad/s/p.u. and λq = 0.2p.u./p.u..

The coupling adds a constraint to the calculation of Qmini

and Qmaxi . For instance, Qmaxi = max Qi(θk, vk) subject to
vi = v, θk ∈ Sθ, vk ∈ Sv∩[vi−∆v, vi+∆v] = [v, v+∆v] for
k ∈ Ni. We compute Qmin2 , Qmax2 with an SOS algorithm
and we use the calculations of Proposition 1 to represent uq2
and uq2 on Figure 1.
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Fig. 1: Evolution of the interval of safety admissible controls
in blue for the voltage of node 2. The blue dot corresponds
to λq∗2 . The green dash-dot lines correspond to uq2(λq2) and
uq2(λq2). The red dotted line indicates that uq2 > uq2.
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Fig. 2: Evolution of the interval of safety admissible controls
in blue for the frequency of node 2. The blue dot corresponds
to λp∗2 . The green dash-dot lines correspond to up2(λp2) and
up2(λp2). The red dotted line indicates that up2 > up2.

As proven in Proposition 2, since 0 is in the interior of Sv ,
we were able to find values of λq2 for which safety admissible
controls exist. On Figure 1, λq∗2 is located at the intersection
of the green dash-dot lines representing uq2(λq2) and uq2(λq2).
Figure 2 shows that the same is true for λp2. The computed
values of λ∗ are gathered in Table I.

Note that for the voltage λq∗ ranges from 80% to 217% of

Inverter 1 2 3 4
λp∗ [rad/s/p.u.] 1.227 2.329 0.875 1.368

λq∗ [p.u./p.u.] 0.228 0.434 0.161 0.241

TABLE I: Maximal droop coefficients λ∗ for which safety
admissible controls exist.

the nominal λq depending on the inverter. For the frequency,
λp∗ ranges from 35% to 93% of the nominal λp.

We now study how the admissible range of states ∆v , Sθ
and Sv impact the maximal droop coefficient λq∗.
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Fig. 3: Evolution of λq∗2 as a function of the allowable
neighbor uncertainty ∆v and of the range of admissible phase
angle Sθ.

In Figures 3 and 4, ∆v = 0.6p.u. depicts a lack of coupling
between inverters, because the length of Sv is at most 0.6p.u.,
while for ∆v = 0p.u. the coupling is perfect, i.e., vk = vi
for k ∈ Ni.
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Fig. 4: Evolution of λq∗2 as a function of the allowable
neighbor uncertainty ∆v and of the range of admissible
voltage Sv .

As predicted with (12) and illustrated on Figures 3 and
4, as the uncertainty ranges ∆v and Sθ increase, the value
of λq∗ decreases. The impact of the length of Sv on λq∗ is
more difficult to predict as it affects both the numerator and
denominator of λq∗ in (12). However, the verdict of Figure 4
is clear: enlarging Sv increases λq∗, the voltage has more
wiggle room inside its safe set, it is thus easier to maintain
v ∈ Sv .



We compute the controls up1 and up1 on an Intel Core i7-
4770S with a CPU at 3.1GHz and 8GB of RAM. Previous
works [8], [11] relied on the widely used MATLAB toolbox
SOSTOOLS [25] and the semi-definite programming (SDP)
solver SeDuMi [26]. However, the computation times were
often excessive for nodes with more than two neighbors.
We thus consider the Julia language [27], its SOS toolbox
[28] and the SDP solvers SDPA [29] and Mosek [30]. As
expected, Julia is faster and the computation times can be
reduced by two orders of magnitude as shown on Table II.

Language MATLAB Julia Julia

SDP solver SeDuMi SDPA Mosek

Run-time for up1 and up1 4295s 343s 33s

TABLE II: Run-time comparison between implementations.

In order to illustrate the invariance of the safe sets with
the safety admissible controls calculated, we simulate the
evolution of the voltage and the frequency of node 1. We
use the original non-polynomial dynamics of the system.
We choose λp1 and λq1 at respectively 40% and 100% of
their nominal values, so that λp1 < λp∗1 and λq1 < λq∗1 .
Then, the intervals of safety admissible controls are Uω =
[−0.724, 1.571]p.u. and Uv = [−0.25,−0.0937]p.u..

Every second we randomly choose a control value uq1 ∈
Uv and up1 ∈ Uω as shown on Figures 5(a) and 5(b).
Similarly, the states ωk ∈ Sω ∩ [ω1 − ∆ω, ω1 + ∆ω]
and vk ∈ Sv ∩ [v1 − ∆v, v1 + ∆v] of the neighboring
nodes are stochastically updated every 10ms as depicted
on Figures 5(c) and 5(d). The evolution of the voltage and
frequency of node 1 are then pictured on Figures 5(e) and
5(f).

We can see that even randomly chosen controls, as long
as they are within the safety admissible interval, enforce the
safety of the system as v1 ∈ Sv and ω1 ∈ Sω despite the
stochastic variations of the neighbor states.

One could rightfully object that the stochastic nature of the
variations of the neighbor states ωk and vk prevent significant
changes in v1 and ω1 that could lead to safety violations. To
overcome this limitation, we run a similar simulation where
the neighbor states take their worst case values. To keep
a constant phase angle θk = −π6 rad, we need a constant
frequency ωk = 0Hz and thus the frequency coupling must
be removed by taking ∆ω = ∞. We set the voltage at its
lowest admissible bound, i.e., vk = max{v, vi − ∆v}. We
keep the same stochastic controls and same values of droop
coefficients.

Figure 6(a) shows how the voltage of a neighboring
inverter v3 follows its admissible lower bound. As illustrated
on Figure 6(b) and 6(c) the voltage v1 is maintained in
Sv and the frequency ω1 is maintained in Sω despite the
stochastic safety admissible controls and the lower bound
neighbor states. Similar results are obtained when choosing
θk at its upper bound π

6 and/or vk at its upper bound
min{v, vi + ∆v}.

VI. CONCLUSION AND FUTURE WORK

In this paper we considered the problem of transient safety
in inverter-based microgrids. Relying on Nagumo’s theorem,
we developed two approaches to enforce the invariance of
frequency and voltage sets of droop-controlled inverters.
We solved the resulting optimization problems with SOS
algorithms and successfully illustrated the safety methods
on a microgrid model.

There are three promising avenues of future work. We first
want to compare the efficiency of our approach in terms of
size of invariant set and of computation times with barrier
function and explicit governor approaches. We believe that
a similar method can be used to handle safe energy storage,
with only adding a state of charge constraint to the problem.
Finally, we want to demonstrate our approach in conjunction
with system level optimal dispatch problem.
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(c) Stochastic choice of neighbor frequency
ω3 ∈ Sω ∩ [ω1 −∆ω, ω1 + ∆ω].
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(d) Stochastic choice of neighbor voltage
v3 ∈ Sv ∩ [v1 −∆v, v1 + ∆v].
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(e) Evolution of v1, kept in Sv by uq
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Fig. 5: Simulation of the voltage v1 and frequency ω1 under stochastic safety admissible controls uq1 and up1, and stochastic
variations of neighbor states θ2, θ3, v2 and v3.
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(a) Evolution of v3 = max{v, vi −∆v}.
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(b) Evolution of v1, kept in Sv by uq
1.

0 2 4 6 8 10

time [s]

-3

-2

-1

0

1

2

3

1
 [
H

z
]

(c) Evolution of ω1, kept in Sω by up
1 .
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